
 The context of the research is a co-design project that has the goals of

designing hardware systems to match application requirements and

mapping applications to the hardware efficiently. To determine

application requirements, we characterize the application using

platform-independent locality metrics. Next we use locality data to

predict cache performance of sequential versions of the application

codes for various cache configurations. After using an analytical model

to select a candidate set of cache configurations, we use architectural

simulation to refine the selection for the target multicore systems.

INTRODUCTION

 The overall context of the CoDAASH hardware-software co-design

project has the goals of designing hardware to match the requirements

of computational chemistry and physics algorithms important to the

materials science problems of interest. To design the optimal cache

configuration for a given algorithm is our main goal.

GOAL

Results for cache configuration(Intel Nehalem-EP) of L1 cache

size= 32KB ,L1 cache line size=64, L1 Associativity= lru , L2 cache

size=256KB ,L2 cache line size= 64 , L2 Associativity=lru , L3 cache

size=2048KB, L3 cache line size= 64,L3 Associativity=lru

RESULTS

CONCLUSION

 In the poster, we report the results of our

evaluations of locality measurement tool from

SDSC. We also describe initial results from our

characterization of the LULESH benchmark. Our

next step will be to use this characterization to

predict cache performance for different cache

configurations.

ACKNOWLEDGEMENT

 This material is based upon work supported by

the Air Force Office of Scientific Research under

AFOSR Award No. FA9550-12-1-0476

University of Texas at El Paso

Sonish Shrestha
sshrestha2@miners.utep.edu

Platform-independent Data Locality Analysis to Predict Cache Performance on
Abstract Hardware Platforms

APPROACH

Data Access Pattern:

Our first step is to evaluate tools for obtaining platform-independent

locality metrics and to validate the results. We are evaluating the PMaC

locality measurement tool from SDSC and the MACPO data access analysis

tool from TACC. We also use the PAPI hardware counter library to sanity

check results returned by these tools. The PMaC locality measurement

tool instruments the application using PEBIL in order to measure reuse

distances and strides for data accesses. It computes reuse distances per

basic block rather than by data structure, but we are working with SDSC

on refining the tool to obtain per data structure metrics. The MACPO data

access analysis tool reports reuse distance per non-scalar variable and also

reports the strides with which these data structures are accessed. PAPI

gives the information of different events related to cache memory like

cache hits, cache misses etc.

To validate the results reported by each tool, we wrote simple matrix and

blocked matrix multiplication benchmark codes for which we know the

expected reuse distances and strides. After manipulating the results to

compensate for the different ways in which the tools work, we found

discrepancies between expected and actual results that are currently

being fixed by the tool developers. We have the tool from SDSC now fixed

and we got some initial results for matrix multiplication(simple and

blocked).

Our second step is to use locality data to predict cache performance of

sequential versions of the applications for various cache configurations.

The application code that we are using initially is the LULESH benchmark,

which serves as a proxy for full shock physics applications CTH and

ALEGRA. We can use a straightforward analytical model to predict cache

misses for a fully associative cache, and we can use a probabilistic model

to predict cache misses for a set-associative cache. We got some initial

results for LULESH benchmark too.

 Simulators:

Our applications will need to need to run in parallel mode to scale to

realistic problem sizes. Predicting cache behavior for a thread-parallel

program running on a multicore system is much more complicated, and

our predictions will be only approximate. To accurately evaluate and

select optimal cache configurations without building the actual hardware,

we make use of architectural simulators. Simulators we are evaluating

include MacSim, SST, gem5, as well as GPGPU simulators.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

4 28

52

76

10
0

12
4

14
8

17
2

19
6

22
0

24
4

26
8

29
2

31
6

34
0

36
4

38
8

41
2

43
6

46
0

48
4

50
8

53
2

55
6

58
0

60
4

62
8

65
2

67
6

70
0

72
4

74
8

77
2

79
6

82
0

84
4

86
8

89
2

91
6

94
0

96
4

98
8

10
12

10
36

10
60

10
84

11
08

11
32

11
56

11
80

12
04

12
28

12
52

12
76

13
00

13
24

13
48

13
72

13
96

14
20

14
44

14
68

14
92

15
16

15
40

15
64

15
88

16
12

16
36

16
60

Window Size VS Number of Cold Misses(16*16)
(Simple Matrix)

No. of cold misses

Matrix Multiplication of 100 by 100 with the block size of 10 by 10 (Part of Sample File)

 Window size=3000, Bin size=1024

Number of Accesses Number of Cold Misses

REUSEID 4222176190398464 4000000 219980

Lower Limit of Bin Upper Limit of Bin Number of Accesses

22 22 1800000

125 125 18000

126 126 36000

127 127 36000

128 128 36000

129 129 36000

130 130 36000

131 131 36000

132 132 36000

133 133 36000

134 134 36000

135 135 1458000

2049 4096 180020
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

22 125 126 127 128 129 130 131 132 133 134 135 2049-4096

Reuse Distance VS Number of Accesses
100 by 100 with Block Size 10 by 10

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000 Reuse Distance vs Number of Accesses
100 by 100 with Block Size 8 by 8

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

42 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

Reuse Distance vs Number of Accesses
100 by 100 with Block Size 20 by 20

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

10

30

32

50

13
0

13
2

13
4

13
6

13
8

14
0

14
2

14
4

14
6

14
8

15
0

15
2

62
9

63
1

63
3

63
5

63
7

63
9

64
1

64
3

64
5

64
7

64
9

65
1

65
3

82
4

82
6

96
6

97
5

97
7

99
9

10
01

10
03

10
05

10
07

10
09

10
11

10
13

10
15

10
17

10
19

10
21

20
49

-4
09

6

Reuse Distance vs Number of Accesses
100 by 100 with Block Size 24 by 24

Figure1: In the above graph look-back window (window size) is 1024 at which the cold misses settles
meaning all subsequent accesses to A, B, C and D arrays(4*16*16=1024) in the main matrix
multiplication routine will already be in the 1024 window of addresses .Therefore, no increase in the
cold misses. It does not matter whether you increase the look-back window beyond 1024 for the
cold misses (cold miss is a miss that occurs when you see a memory reference for the first time).

 Figure 2,3,4 : The three graphs compare changes in reuse distances for

various block sizes for the same matrix multiplication size 100*100. The

graphs show that for a given block size, many accesses have the same

reuse distance and that the specific distances change with change in

block size. The bar showing the reuse distance at which most of the

accesses occur shifts toward the right as the block size increases. This is

because as the block size increases, the reuse distance also increases.

These results validate our expected results for the SDSC tool.

Fig5: Overview of the Data generated and Plot

 Figure2

 Figure3 Figure4

Figure6: LULESH BENCHMARK: Above graph presents the graph of percentage of number of accesses vs reuse distance for the window

size 23900 and bin size 512. The bar indicates the percentage of accesses which have same reuse distance.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 6 11

16

21

26

31

36

41

46

51

56

61

66

71

76

81

86

91

96

10
1

10

6

11
1

11

6

12
1

12

6

13
1

13

6

14
1

14

6

15
1

15

6

16
1

16

6

17
1

17

6

18
1

18

6

19
1

19

6

20
1

20

6

21
1

21

6

22
1

22

6

23
1

23

6

24
1

24

6

25
1

25

6

26
1

26

6

27
1

27

5

28
0

28

5

29
0

29

5

30
0

30

5

31
0

31

5

32
0

32

5

33
0

33

5

34
0

34

5

35
0

35

5

36
0

36

4

36
9

37

5

38
0

38

5

39
0

39

5

40
0

40

5

41
0

41

5

42
0

42

5

43
0

43

5

44
0

44

5

45
0

45

5

46
0

46

5

47
0

47

5

48
0

48

5

49
0

49

5

50
0

50

6

51
1

40

97
-8

19
2

 Reuse Distance vs Percentage
(Lulesh Benchmark)

Percentage

