A Massively Parallel Domain Decomposition Method for Large-Scale DFT Electronic Structure Calculations

Truong Vinh Truong Duy^{1,2} and Taisuke Ozaki¹

¹Research Center for Simulation Science, Japan Advanced Institute of Science and Technology (JAIST)

²Institute for Solid State Physics, The University of Tokyo

Email: duytvt@{jaist.ac.jp,issp.u-tokyo.ac.jp}, t-ozaki@jaist.ac.jp

Motivation

Density functional theory (DFT)

Quantum mechanical modeling method used to investigate the electronic structure of many-body systems in physics and chemistry.

Petaflops era and beyond

□ The K computer with approximately 700,000 cores.

□ Exallops machines with millions of cores expected to arrive by 2020. OpenMX (Open source package for Material eXplorer)

□ Linear scaling DFT code.

Large-scale calculations demanded.

Purpose

2. Grid Decomposition Method

Define four data structures to make data locality consistent with that of the clustered atoms for minimizing inter-process communications.

Purpose

Develop a domain decomposition method for enabling large-scale DFT calculations with hundreds of thousands of atoms and cores.

Objectives

- Approximately the same computational amount for each process.
- □ Locality held: nearby atoms assigned to the same process.
- □ Inter-process communications minimized.
- □ Applicable to any numbers of atoms and processes.
- □ Applicable to any distribution patterns of atoms in space.
- Computationally inexpensive.

Method

1. Atom Decomposition Method

Two key ideas: (i) the modified recursive bisection method for recursively decomposing the domain by constructing a binary tree, and (ii) the moment of inertia tensor for finding a principal axis of each subdomain to reorder the atoms based on their projection on the axis and divide them into two sub-domains to fit the binary tree structure.

3. 3D Adaptive Order-Aware Decomposition Method for 3D FFT

Automatically decompose in 1D, 2D, or 3D depending on the process number while giving priority to lower order.

Fig. 1: The modified recursive bisection method with the binary tree for 19 processes.

Fig. 3: Example of the atom decomposition method with 26 atoms.

(c) Multiply-connected carbon nanotube: 8 MPI processes.

(d) Multiply-connected carbon nanotube: 16 MPI processes.

Fig. 4: Atom decomposition with 16,384 diamond atoms and 19 processes, and CNTs.

Our method

Atom decomposition method + Grid decomposition method. □ 3D adaptive order-aware decomposition method for 3D FFT. □ The parallel efficiency at 131,072 cores is 67.7% compared to the baseline of 16,384 cores with 131,072 diamond atoms.

Future work

Evaluate our method with non-linear scaling methods.

Acknowledgements

CMSI and Materials Design through Computies, MEXT.

References

[1] T.V.T. Duy and T. Ozaki, arXiv:1209.4506 (2012). [2] T.V.T. Duy and T. Ozaki, arXiv:1302.6189 (2013).